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J. Phys. A: Math. Gen. 16 (1983) L601-L606. Printed in Great Britain 

LETTER TO THE EDITOR 

Spacing distributions for some Gaussian ensembles of 
Hermitian matrices 

M L MehtatO and A PandeytS 
t Service de Physique ThCorique, CEN Saclay, 91191 Gif sur Yvette, Cedex, France 
$ Division de Physique ThCorique, Institute de Physique Nucltairell, 91406 Orsay, Cedex, 
France 

Received 15 August 1983 

Abstract. The probability E ( n ,  s) that an interval of length s contains exactly n eigenvalues 
of a random matrix is expressed in terms of their correlation functions. For the Gaussian 
ensemble of Hermitian matrices with an arbitrary ratio of their symmetric and antisymmetric 
parts, studied earlier, we can thus write E ( n ,  s) as a convergent infinite product multiplied 
by an infinite sum. 

In an earlier paper (Mehta and Pandey 1983) we studied two Gaussian ensembles; 
one of Hermitian matrices with an arbitrary ratio of their symmetric and antisymmetric 
parts, and the second of Hermitian quaternion matrices with an arbitrary ratio of their 
self-dual and anti-self-dual parts. There we stated the reason of our interest and the 
possible applications. We gave closed expressions for all the correlation and cluster 
functions of these ensembles. 

Here we will express the probability that a given interval contains exactly n 
eigenvalues in terms of the correlation or the cluster functions, and hence write that 
probability as an infinite product multiplied by a sum. This study indicates the existence 
of close relations, yet to be discovered, between prolate spheroidal functions of even 
and odd orders and their eigenvalues. 

Consider an ensemble of N X N Hermitian matrices [ H j k ]  = [Rjk +isjk], R and S 
real, with the joint probability density of the matrix elements as 

From the above equations we derived (Mehta and Pandey 1983, Pandey and Mehta 
1982) the joint probability density p ( x l , .  . . , x,) of the eigenvalues xl,. . . , xN of H. 
The probability of observing n eigenvalues in the intervals dx,, . . . , dx,, around the 
points xi,. . . , x, irrespective of the other eigenvalues is R, dx, . . . dx,, where R, is 
the n-level correlation function 

N !  
( N - n ) !  R , ( x ~ , .  . . , x,)=- jm . . . p ( x l , .  . . , x,) dx,+l. .  . dx,. (3) 
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The probability that an interval 8 contains exactly n eigenvalues is 

%'(a, 6) = N !  [ . . . [ dx, . . . dx, [ . . . [ dx,+l . . . dX@(X,, . . . , xN), (4) 
n ! ( N - n ) !  1" out 

where the subscript 'in' means that xl, .  . . , x, vary in the interval 8, while the subscript 
'out' means that x,+,,. . . xN vary outside the interval 6. 

Introducing the characteristic function of the interval 

1 if x lies in 6, 
= { 0 otherwise, 

we can write (4) as 

We assume the interval 8 to be small so that the level density R l ( x ) ,  for x in 6, can 
be taken to be constant. Measuring 6 in terms of the local mean spacing, s = 6R1, we 
will write E ( n ,  s) = lim %(n, 8 )  for N +  CD. This E ( n ,  s) is the probability that an 
arbitrary interval of length s, measured in units of the local mean spacing, contains 
exactly n levels. The spacing distributions are related to the second derivatives of the 
E (n ,  s) ; see Mehta and des Cloizeaux (1972). 

We will show that 
m 

E(O7 s) = fl ( 1  -P j ) ,  (7) 
j = O  

and for n>O 

where pi = pj (s) ,  J' = 0,1 ,2 ,  . . . are the (discrete) eigenvalues of the infinite matrix 
consisting of the 2 x 2 blocks 

with 

(12) 
r Ad2 = cr/(local mean spacing), 

and f i (x)=fi(x;  c) are the prolate spheroidal functions, solutions of the integral 
equation 
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or of 

normalised as 

The y1 = y I (  c)  are the eigenvalues in (1 3) and 

(16) c= '  2 77s. 

One may think that in the limit N+oo the result should be the same for any finite 
value of A, since it amounts to putting a = 0. Actually this limit is delicate and depends 
on how a + 0. 

We now prove (7) and (8). Expanding the product II[l-x,(~j)]  in (6) and 
regrouping similar terms we get 

where R, (x l ,  . . . , x,) is the j-level correlation function, equation (3). Defining 

. . . I R i ( x l , .  . . , x,) dx, . . . dx,, r, = I 
(x ,  in 0 J 

we can write 

8 ( n ,  e) =- (-1Y f (-11, F y r , z ' ] l  . (19) 
n !  , = n ( j - n ) !  ,=o J .  z = 1  

Introducing the generating function R (2) (Mehta 1967, appendix A.6), 

one can write 

where T ( z )  is the generating function for the cluster functions 

r c 

t, = J . . . 1 T ( x l , .  . . , x j )  dxl . . . dx,. 
(x,in e )  

Substituting the expression for T,, obtained by Mehta and Pandey (1983), 

Tfl (Xl , .  . . x, )  = f  Tr 1 @ ( X I ,  ~ 2 ) @ ( ~ 2 ,  ~ 3 )  . . . @(xn, XI), (24) 
in (7) we get 

(25) l,, = ( n - 1 I! 4 Tr . . . 1 @( xl, x2)@)(xz, x3) . . . @( x,, xl) dx, . . . dx,, 
(x,inf3) 
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where @ ( x ,  y )  is a known 2 X 2 matrix (see equation (2.14) of Mehta and Pandey 
1983). We will not repeat its expression here, since it is cumbersome to write it for 
finite N. 

Though not evident, one can convince oneself that the integral equation 

I, @ ( x ,  Y ) $ ( Y )  dY = I L . w x )  

has N distinct eigenvalues pl, each eigenvalue occurring twice, so that 

N-l 

$Tr  . . . @ ( x l ,  x2)@(x2, x3 ) .  . . @ ( x , ,  x , )  dx, . . . dx, = c py, 
( x,intV 1=0 

and from (22) and (25) we have 

Substituting this in (21) we get 

Taking the limit N + m ,  we can replace @ by (+ (see equation (2.34) of Mehta and 
Pandey 1983) 

t sin(tr) exp(2A2t2) dt, 

J ( r ) = - -  11 - sinjtr) exp(-2A2t2) dt. 

The integral equation (26) becomes in this limit 

s / 2  

and we have 

(33) 

where pi are now the distinct eigenvalues of (33). 
Making a change of variables in (33) to bring the limits of integration to (-1, 1) 

and expressing the unknown solution as a linear combination of prolate spheroidal 
functions, we can use (13), (14) and (15) to conclude that 2pJs are the eigenvalues 
of the infinite matrix 



Letter to the Editor L605 

where 

=$  [ If, dx dy dz  ei‘x-y’czf,(x)f,(y) 

-I 2 
- 2 ~ 1 8 1 m 5  

BI, = j:l dx dy jol dk k e ~ p ( 2 A ~ ~ ~ k ’ )  sin kc(x-y)fl(x)fm(y) 

= Y ~ ~ m $ [ ( - l ) ‘ - ( - l ) ~ ]  dk k exp(2A2~’k2)f,(k)fm(k), 

(36) 

(37) 

Note that B,, = 0 = C,, if 1 + m is even, and 

B 2 1 , 2 m + 1 =  -&m+1.21= 4 m ,  (39) 

C 2 1 , 2 m + l =  - C 2 m - + 1 , 2 1 =  J I ~ ,  (40) 

where Dim and Jlm are given by (10) and (11). Thus the eigenvalues of s M / 2  are the 
eigenvalues of the matrix (9) each repeated twice. 

Equation (34) is equivalent to (7) and (8). 
(1) When (Y is fixed and N + a, A +a, D( r )  + a3 and J ( r )  + 0, while the product 

J (  r)D( r )  + 0. In this case we can therefore replace J (  r )  and D( r )  by zeros. The matrix 
(9) is then diagonal and has eigenvalues pi = bsr?. Equations (7) and (8) then agree 
with the known result for the Gaussian unitary ensemble (Mehta and des Cloizeaux 
1972). 

(2) For any A ,  taking the trace in (9) we have 

but from (13) 

so that I;, pi = s. This provides a check for any calculation, numerical or otherwise. 
(3) For (Y = 0 = A ,  one can expand the pi in powers of s. Thus 

p o = s - & T 2 s 2 - 1  1296T 4 3 +. . .  7 /-Ll =&7T2s2+(&7T4-&T2)s3+. . . , 
p2=&7T2s3-. , . , p3=&7T4s4+. . . . (43) 

For A Z 0, a power series expansion in s is not possible. 
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(4) The case a = 0 = A corresponds to the Gaussian orthogonal ensemble, where 
one knows (Mehta and des Cloizeaux 1972) that 

while for n > 0, 

The sums ( i )  in the last two equations are taken over all integers with 0 zs i l  < i2 < . . . < 
1". 

These should agree with (7) and (8), giving a set of relations among various prolate 
spheroidal functions and their eigenvalues, not yet recorded. 

( 5 )  For the Gaussian ensemble of Hermitian quaternion matrices with an arbitrary 
ratio of their self-dual and anti-self-dual parts, (7) and (8) are again valid where pi 
are the distinct eigenvalues of 

s / 2  [-*,* 4 x -  Y M Y )  dy = F(x) ,  

and U is given by (2.66)-(2.68) of Mehta and Pandey (1983). 
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